Current building controls only maintain the thermal conditions of room air. Air temperature is only one of several factors that impact thermal comfort while heat transfer by radiation from surfaces influence roughly half of thermal comfort. To address these issues, Meggers’ lab has developed an inexpensive, non-contacting mean radiant temperature sensor that measures surface radiant temperatures, calculates the mean radiant temperature at any given location, tracks temperatures in a 3D space, and is also capable of perceiving the presence of occupants. The sensor can be deployed for building controls, diagnostics by HVAC technicians, and during the design phase of a structure. Usage of the sensor would not only increase comfort for occupants, but also save money and boost energy efficiency in buildings. For this project, Meggers obtained a provisional patent and developed working prototypes. Funds from this grant will be dedicated to producing a compact and robust design for the sensor, verifying performance of the device, and developing a user interface and building system integration in collaboration with Siemens and Princeton’s facilities department. The end goal is a sleek, compact, marketable product and application package that seamlessly allows analysis of any space.
More on the Intellectual Property Accelerator Fund
The University’s Intellectual Property Accelerator Fund awards gap funding to Princeton investigators with the goal of fostering and advancing the development of nascent technologies from University labs into commercial development, and, ultimately, the global marketplace.
The fund addresses the development gap between early stage research and attractive, investment- and venture-grade opportunities. The fund is meant to support proof-of-concept work, data collection, and/or prototyping that can yield important information or further development that would make a technology more commercially attractive.
Announcement by the Andlinger Center of Energy and the Environment can be found here.